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We have studied the angular dependence of Shubnikov—de Haas oscillations in a sample of

p-type PbTe having a hole concentration of 3.0 X 108 cm

-3, Orientations of the magnetic field

in a {110} plane and temperatures between 4.2 and 1.2 °K were used. For the first time in

this material,

the component frequencies were determined by Fourier analysis. The angular

dependence of the corresponding extremal areas was precisely fitted by four {111)-oriented
ellipsoids of revolution having a “mass anisotropy” of 13 and containing the same number of

holes as that determined from the high-field Hall coefficient.

These results, which are con-

siderably different from those previously reported by Cuff e¢ al. for material with the same
hole concentration, sug,gest that the anisotropy is constant, at least up to the hole concentra-
tion studied here. A &*p *p band model, consistent with this behavior and with other results
presented here, is considered. From the temperature dependence of the oscillations with
HI[111], the transverse effective mass at the Fermi level m,(ez) is (0.036 £+0.002)m. Longi-
tudinal and transverse effective g values at ! the Fermi level were determined from the spin
splitting of peaks in the oscillations. For i [111] N the ratio of spin splitting to Landau-level

separation is 0.58+0.01, and g,(€z) =322,
=T+2,

I. INTRODUCTION

It is well known that the four extrema of the
principal valence band of PbTe are located at the
L points of the Brillouin zone of the fcc lattice.’
Since PbTe is an extrinsic semiconductor with
large mobilities, Fermi-surface studies by means
of Shubnikov-de Haas*~* and de Haas~van Alphen®
oscillations, Azbel-Kaner cyclotron resonance,
and magnetoacoustic attenuation’ have been carried
out,

A study of the carrier-concentration dependence
of the cyclotron effective mass and the Fermi-
surface anisotropy near the top of the valence band
was first reported by Cuff, Ellett, and Kuglin,*?*
A similar study of the anisotropy has recently been
completed by Schilz” on both p- and n-type
material,

Cuff et al.?? interpreted the observed increase
in the transverse cyclotron mass with increasing
carrier concentration in terms of the nonparabolic,
nonellipsoidal model developed by Cohen® for bis-
muth. They also reported that the mass anisot-
ropy decreased from approximately 13 for a hole
concentration of about 4 X 10'" cm™® to 6 for a con-
centration of 3 X 10*® cm™, This decrease is much
larger than that predicted by the model and was
accompanied by a corresponding decrease in the
carrier count relative to that measured by the
high-field Hall coefficient.® This suggested the
possibility that some of the carriers had entered
a second valence band, especially since carrier
counts obtained by these two methods were in good
agreement for the other lead salts,®

The purpose of this paper is to present results
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For H,[111], this ratio is 0.27 +0.01, and g ()

obtained on material having a concentration of

3.0 X 10*® cm™® that show that the mass anisotropy
at this concentration is 13, rather than the value
6 reported by Cuff et al.? An anisotropy of 13 cor-
responds to the volume in & space that precisely
accounts for the total number of carriers we ob-
tained from the high-field Hall coefficient. In the
light of the similar value of anisotropy found by
Cuff et al. at low hole concentrations, where all
carriers were accounted for, our value suggests
that the anisotropy is approximately constant, at
least up to a hole concentration of 3.0 X 10'® ecm™
Within experimental error, this is consistent both
with the Cohen model and also with a more exact
model for PbTe to be discussed,

As Dimmock and Wright!® pointed out, one of the
parameters most sensitive to the important band
interactions that determine the properties of
carriers at the Fermi energy is the ratio of spin-
splitting to the Landau-~level separation., The de-
termination of this ratio is described in detail for
the two principal orientations of the magnetic field
Hi[111] and H1[111]. From these ratios and the
corresponding cyclotron effective masses, effec-
tive g values at the Fermi surface g,(ez) and g, (€5)
are obtained.

II. THEORY OF SHUBNIKOV-de HAAS EFFECT

There are a number of papers and review articles
that describe the theory of electrical transport
phenomena in the quantum regime.!! For the oscil-
latory component of the resistivity, we will use a
slight modification of the expression given by Roth
and Argyres'!

1977



1978 BURKE, HOUSTON, AND SAVAGE

p=Apy 22 b, cos[2n(rciiS/2me)H™ = 2nry = 1], (1)
r=1

where
b ——-—7-51 nwo) Ve (27Tz7kT/ﬁwc)e'2M/wcr
2t sinh(27%7kT /hiw,)

X cos(mrm®g/2m) . (2)

Po is the zero-field resistivity, and A is a constant
which depends on the orientation of the magnetic
field relative to the current direction. For a
given orientation of the magnetic field, the ex-
tremal cross section S of the Fermi surface in %
space perpendicular to the field determines the
frequency of the fundamental oscillation (=1).
The amplitude factor b,, which determines the
damping of the oscillations as a function of field
strength and temperature, also depends upon (i)
the cyclotron frequency w,=eH/m®°c, where m®*°
is the cyclotron effective mass, (ii) the Fermi
level ¢, (iii) the effective g value g, and (iv) the
lifetime 7 of the Landau states. Finally, m is the
free-electron mass. The phase of a component
oscillation at 1/H=0 is determined by y, which is
equal to 3 in the free-electron approximation, and
by the term cos(mm®°rg/2m).

The summation over 7 includes all harmonics of
the fundamental frequency. If the Fermi surface
is a single sheet having more than one extremal
cross section, or if, as in the case of PbTe, there
is more than one sheet, one should also include a
summation over extremal cross sections in Eq.(1).

From the argument of the cosine in Eq. (1), the
frequency of the fundamental oscillation (r=1) is

F=(cr/2me) S=(1.04 X 107®)S , (3)

where the units of S are cm™, and F is in G. For
an ellipsoid of revolution, this can be written as

F=3.15X10°(p/10®*3K"5[1 + (K —1)cos?0] V2, (4)

where p is the number of carriers enclosed, © is
the angle between the direction of the magnetic
field and the major axis, and K is the square of
the maximum-to-minimum cross-section ratio,

III. EXPERIMENTAL

The sample measured was taken from a single
crystal pulled by the Czochralski technique. It
was annealed at 420 °C to obtain a hole concentra-
tion of about 3 X 10'® cm™ and to improve the
homogeneity. The improved homogeneity reduces
spatial fluctuations in the Fermi level relative to
the band edge and thus minimizes damping of the
oscillations due to spatial variations in the ex-
tremal cross sections of the Fermi surface. The
actual hole concentration was determined from a
measurement of the high-field Hall coefficient

[N)

RTNTEL
MAGNET MODEL 114C F—{VOLTAGE
CURRENT DIFFERENTIAL | | o [DIVIDER
AMPLIFIER
Y-AXIS
X-Y KEITHLEY < o
IRECORDE}J:lMiDEL 19 —¢ |SAMPLE

FIG. 1. Block diagram of the apparatus used to ob-
tain x-y recorder traces of Shubnikov—de Haas oscilla-
tions. The signal from the voltage divider is used to
buck out the background magnetoresistance.

which yielded a value of 3.0 X 10'® cm™,

The sample was mounted in a 2-in, o.d. single-
axis rotating holder for measurements in a l%-in.—
bore 150-kG solenoid provided by the Naval Re-
search Laboratory. Conventional dc measure-
ment techniques were used. Figure 1 shows a
block diagram of the apparatus. The signal from
the voltage probes was of the order of 100 uV at
4,2 °K for a sample current of 400 mA. This
signal was bucked by a fraction of the output from
a Model 114 C Kintel differential amplifier, The
imput for this amplifier was provided by the voltage
drop across a resistor in the magnet current cir-
cuit, The bucking voltage, which is linear in the
magnetic field, is necessary to reduce the large
background magnetoresistance so that the Shub-
nikov—de Haas oscillations can be observed with
greater sensitivity, The net signal was then fed to
a Keithley Model 149 microvoltmeter. The output
of the Keithley was displayed on the vertical axis
of an x-y recorder whose horizontal axis was
driven by the output of the Kintel amplifier. Traces
of the Shubnikov—-de Haas oscillations were then
made for each sample orientation.

IV. RESULTS AND DISCUSSION

A. Angular Dependence of Extremal Cross Sections

All of the data to be described in this paper were
obtained for crystallographic orientations of the
magnetic field H in a {110}-type plane, which, to
be specific, we take to be the (110) plane. Figure
2 shows this plane of rotation of the field relative
to the four (111)-hole ellipsoids of PbTe. Figure
3 presents the oscillatory pattern obtained for an
angle © between H and the [110] axis equal to 55°,

The Fermi surface exhibits three extremal cross
sections for this orientation, one of these cor-
responding to the largest of ellipsoid B. The cor-
responding oscillation is usually difficult to detect
because of the large cyclotron mass for this orbit.
In addition, an accurate determination of its fre-
quency is complicated by the presence of the other
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FIG. 2. Four (111) ellipsoids of p-type PbTe. Data
were obtained for orientations of the magnetic field H
in the plane of ellipsoids A and B.

component frequencies as well as by spin splitting
of the Landau levels, This latter effect will be
discussed in more detail in Sec. IV D, Because
the area of the largest cross section is important
for an accurate determination of the shape of the
surface as well as the volume enclosed, we have
used a computer-programmed Fourier analysis

to separate out the component frequencies. This
has also been a helpful tool in many other orienta-
tions because of the complications exhibited by the
data.

Figure 4 is the Fourier analysis of the data in
Fig. 3. The peak at 3.96 X 10° G corresponds to
the largest cross section of ellipsoid B, The peaks
at 1.16 and 2, 18 X 10° G correspond to the other
two cross sections exhibited by ellipsoids A and C,
respectively. In addition to these fundamental fre-
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FIG. 3. Shubnikov—de Haas oscillations for the mag-
netic field orientation indicated in the figure. The cen-
ter line is obtained from a least-squares fit of a low-
order polynomial to the data. This center line is sub-
tracted out before the data are Fourier analyzed in 1/H.
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FIG. 4. Fourier analysis of the data in Fig. 3. The
peak at 3.96 x10° G corresponds to the largest extremal
cross section of ellipsoid B. Those at 1,16 and 2.18
x10° G correspond to the other two cross sections ex-
hibited by ellipsoids A and C, respectively (see Fig. 2).

quencies, a number of harmonics are also indi-
cated. Figure 5 is a composite of the frequencies
obtained from Fourier analyses of the data at all
of the orientations measured, The solid circles
represent the fundamental frequencies, while the
open circles are harmonics of these, Not all the
harmonics observed are plotted. For example, as
many as five harmonics of the lowest-frequency
branch corresponding to ellipsoid A were detect-
able. The solid curves in this figure were calcu-
lated from Eq. (4) for K=13 and p=0.75 X 10'®
cm™3,
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FIG. 5. Composite of the frequencies obtained from
Fourier analyses of the data for each orientation of the
magnetic field © measured. The solid circles repre-
sent fundamental frequencies, while the open circles
are harmonics of these. Not all of the harmonics ob-
served are plotted. As many as five harmonics of the
lowest branch were detectable. The solid curves were
obtained from Eq. (4) using K=13 and p=0.75%x108cm™,
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B. ﬁﬁ Band Models

In a parabolic band, K is also the effective mass
anisotropy. When the band is nonparabolic, how-
ever, the relationship between K and the mass
anisotropy depends upon the specific dispersion
relation,

Dimmock and Wright!® (DW) first proposed a
E-ﬁ band model for the lead salts that led to a dis-
persion relation which was a special case of the
more general model previously derived for bis-
muth by Cohen,® This dispersion relation was
originally applied to the lead salts by Cuff et al,?'?
who used it to interpret the carrier-concentration
dependence of the cyclotron effective mass, Al-
though the DW model neglects the longitudinal in-
teraction between conduction and valence bands
that later theoretical work!**® showed to be im-
portant, the corresponding dispersion relation
gives a useful description of the carrier-concen-
tration dependence of the Fermi-surface param-
eters of PbTe. From Eq. (7) in DW, this rela-
tion is
7%/ mP )P RE = (€ = 2K /2m}) (€ + €, + T°KS /2mf)

(5)

where Il and L refer, respectively, to directions
parallel and perpendicular to a (111)-type direc-
tion. k&, and &, are wave vectors; m{ and m| are
parabolic conduction and valence-band effective
masses determined by next nearest bands; P, is
the momentum matrix element describing the
coupling of L-point conduction and valence-band
states by the perpendicular component of the mo-
mentum operator; €, is the energy separation be-
tween L-point states, € is the energy relative to
the valence-band edge, and m is the free-electron
mass. We can rewrite Eq, (5) in a form which
more clearly shows its relationship to the ellip-
soid-of-revolution parabolic model:

n%? [zpi e 1 ﬁzkﬁ\)'l]
—_ _‘_2'_ 1+_ + __c
ze |[mc, €, € 2my

212
AL ®)

= =1,

2¢€ my

In view of the good agreement between Eq. (4) and
the data shown in Fig, 5, we wish to consider ex-
pressions for extremal cross sections and cyclotron
effective masses that are obtained from the ellip-
soid-of-revolution approximation to Eq. (6). This
approximation is obtained by neglecting the term
n%k% /2m¢. For this case,

A, = 21/7%) (mle, /2PDmi] Pe(1+ € /€)% (1)

where A, is the extremal cross section for H 1
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[111]. Equation (15) of DW also shows that this is
a good approximation to A, for the hole concentra~-
tion of our sample. Without approximation,

A,=(2/n%)(mPe, /2P2)e(1 +€/¢,) @)
where A, is the extremal cross section for il
[111].

The corresponding cyclotron effective masses
can be obtained from the usual expression

m¥°= (72/2m)dA/de . (9)
Applying this to Eq. (8), we have

mi¥= (m%, /2P2)(1+2¢/€,) , (10a)
me¥=m(0)(1+2¢/¢,) , (10b)
mi=m, (0)(1+2¢/¢,) , (10¢)

where m°” is the cyclotron effective mass for H Il
[111] and mg"(0) is its band-edge value, Equation
(10c) follows from Eq. (10b) for an ellipsoid of
revolution for which ,(0) is the band-edge effec-
tive mass in all directions in a plane perpendicular
to a (111)-type direction., Application of Eq. (9)

to (7) yields

m*e= (my (0)mp) 21+ 2(e/e,)](1 + €/e,)? (1)

where mS” is the cyclotron effective mass for
Hi[111].

We have previously defined K to be the square
of the maximum-to-minimum cross-section ratio
of the ellipsoid. Therefore, making use of the
definition of #2,(0) made in Eqgs. (10), the square
of the ratio of Eq. (7) to Eq. (8) becomes

K=— (12)
" my0)1+€/e,)
Thus, K is a measure of the band-edge mass an-
isotropy modified by the factor (1+¢€/€,). As
Eq. (10c) shows, K is not, as one might expect,
a measure of the mass anisotropy at the Fermi
level. From Egs. (10c) and (11),

<mi’°>2 m? {:1+3/2(€/€£)}2' 13)

me) = 0 1+e/e) | 1+2(€/e,)

This differs from K by the square of the energy
factor in the brackets,

Figure 6 is a plot of K, normalized to its band-
edge value m! /m,(0) versus the ratio of the Fermi
energy to the energy gap. For the dispersion re-
lation we have been discussing, the Fermi energy
is related to the hole concentration by

p - 29/21r{V2/3[mi(o)mﬁ]1/3}3/2/3h3
x e3’2[1+(1+l 7—”@)—5] (14)

5 my /) €,
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FIG. 6. K, normalized to its band-edge value, versus
the ratio of the Fermi energy € to the energy gap €, be-
tween conduction and valence bands for the DW model
[see Eq. (12)]. The hole concentrations shown at the
top of the figure were obtained from Eq. (14) for values
of the parameters given in the text following that equa-
tion.

for degenerate statistics, where v is the number
of ellipsoids. Using m,(0)=0.022 eV (Ref. 3),
€,=0.19 eV (Ref, 14), m} =Km,(0), and assuming
my /m{=1, some values of p obtained from this
equation are shown at the top of the figure. For
»=3.0 X10"® cm™, € is only about 12% smaller

than the value obtained from the parabolic approxi-
mation to Eq. (14) (obtained by neglecting the energy
term in square brackets). For the same p, the an-
isotropy K has decreased by only 15% of its band-
edge value. Comparison of Eqs. (10c) and (12)
shows that this decrease in X should be half of the
corresponding decrease in the mass anisotropy
my/m,.

Figure 7 shows the hole-concentration dependence
of K (open circles) and m, /m (open triangles) re-
ported by Cuff et al.? When p=3.0 X 10® cm™?, K
has decreased by about 50% of its band-edge value,
approximately the same amount by which n, /m
has increased. In contrast to this, the value of K
we obtain for this concentration from the data in
Fig. 5 is shown in Fig, 7 by the solid circle, The
same value has recently been obtained by Schilz’
from magnetoacoustic data for p=2.14 X 10'® cm™,

As mentioned above, Cuff et al.?® found that the
number of holes contained in four ellipsoids with
the K values they measured become less than the
number measured by the high-field Hall coefficient
as this latter number increased. To the contrary,
for p=3.0 x 10'® cm™ we find excellent agreement
between carrier counts obtained from these two
methods. Since Cuff ef al.® were able to account
for all carriers at low concentrations using K= 13,
our result suggests that K is constant at least up
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to p=3.0 X 10® cm™, The 15% decrease in K
predicted by Eq. (12) is probably within our ex-
perimental error; however we will consider
briefly a more exact k- p band model and some ap-
proximations to it.

As discussed in detail by Mitchell and Wallis!®
and previously considered by Lin and Kleinman, 2
spin-orbit coupling in the lead salts leads to con-
duction- and valence-band wave functions at the L
point which are coupled by both transverse and
longitudinal momentum operators. Contrary to the
DW model, one should therefore treat the longi-
tudinal interaction in the exact solution of the E-f)
secular determinant rather than as a perturbation.
This approach leads to the dispersion relation'®

ﬁz
;F{Pfkim 2= (e = %K% J2mP - 2R2 /2m?)

7ee h%i)
X €, -
(e +€, 4+ —F ame + ame) (15)
The principal departure from Eq. (5) is the addi-
tion of the term containing P%, Putting Eq. (15)

into the form of Eq, (B) gives

A ) [1+_e__ R
2¢ | m} mgeg e b 2mf  2mS :

4

2
+ﬁk% ,.2P; [1+i+_1 ﬁzkﬁ+ Zkz\
2 |m} me € € \2mf /
(16)

Asbefore, the nonellipsoidal terms will be neglected.
If we can also neglect the terms 1/m} and 1/m?,
which describe effective mass contributions by all
bands other than the conduction band, Eq. (16) re-
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FIG. 7. Hole-concentration dependence of the “mass
anisotropy” K (open circles) and the normalized trans-
verse cyclotron mass m,/m (open triangles) reported
by Cuff et al. (Ref. 2). The solid points correspond to
our results fov P=3.0%x10% em™, A, and 4, are, re-
spectively, extremal Ccross sectxons of an elhpsmd for
H1(111) and T {111) directions.



1982 BURKE, HOUSTON, AND SAVAGE 2

duces to the two-band model,
kS
(2¢/1*)Nm,(0)(1 +€/€,)]
+ i =1
(2¢/7%)[m,(0)(1 + €/€,)] ’

where ,(0)= m?, /2PZ and as before, m,(0)
=m?, /2P%. The appealing feature of this relation
is that

K= Wlu(O)/mJ.(O)= (P.L /Pu)2 ) (18)

(17)

i.e., it is independent of hole concentration. * We
can also use Eq. (18) to obtain an estimate of P,,,
since P, can be computed from numbers available
in the literature, It is conventional to calculate
momentum matrix elements in units of energy.
For P,, we have

2P% /m=me, /m,(0) . (19)

Using €,=0.19 eV (Ref. 14) and m,(0)=0. 022m
(Ref. 3), 2P2/m=8.6 V. This is larger than the
value 6.4 eV reported by Cuff et al.® because of
their use of an effective gap obtained from their
measurements. Using 8.6 eV and Eq. (18), 2P/
m=0,66 eV for K=13.

Application of Eq. (9) to the extremal areas ob-
tained from Eq. (17) shows that

K= (mfyc /mﬁyc)a . (20)

Since this differs from the relationship between
these quantities described by Eqs. (12) and (13),
one could also hope to see the difference between
the models described by Eqgs. (6) and (17) in mea-
surements of cross-section and cyclotron mass
anisotropies. However, this may not be practical
in the legd salts where precision cyclotron mass
measurements are difficult, for reasons described
in Sec. IV C.

C. Effective Mass

From Egs. (1) and (2), the amplitude of the os-
cillation at the fundamental frequency (r=1) at
temperature T, is related to that at temperature
T, by

A(T,)) T, sinh(2n?kT, /fiw,) (21)
A(T,) ~ T, sinh(2n?kT, /fiw,) ’

where w,=eH/m*°, For small values of Zw,,
the ratio of sinh functions can be approximated by
an exponential, %" can then be determined from
the slope of a semilog plot of A(T,)/A(T,) versus
1/H. The cyclotron mass and collision broadening
of the Landau levels in PbTe are such that the
exact form of Eq. (21) is necessary at most fields
at which oscillations can be observed. We have
obtained m° from a least-squares fit of Eq. (21)

to amplitude ratios obtained for several different
values of 1/H. An average cyclotron mass was
obtained by doing this at a number of different
temperatures.

Figure 8 shows the oscillations for Hu [111],
with 7y=3.19 °K and T,;=1.36 °K. Data for the
least-squares analysis were obtained from the
envelope of these curves and restricted to the field
range in which only the fundamental frequency
from one ellipsoid (ellipsoid A in Fig. 2) was
present,

Figure 9 shows the dependence of the amplitude
ratio on 1/H, The data are indicated by the cir-
cles, and the bars are a measure of their uncer-
tainty, The X’s are calculated amplitude ratios
for the best-fit value of m°" indicated in the
figure.

The second column of Table I gives the average
of the best-fit 7°"°/m values for H I [111] and
[001]. The uncertainties are defined by the scatter
of the best-fit masses obtained from several sets
of temperature differences. m®°/m for H il [111]
is in good agreement with that previously reported
by Cuff et al.? for material having approximately
the same hole concentration (see Fig, 7). The
percentage uncertainty in m°/m for H1 [001] is
about three times as large as that for H Il [111],
This was surprising because the [001] data were
of higher quality and were obtained over a larger
field range before interference by the second har-

T T T T T T T
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FIG. 8. Temperature dependence of the amplitude of
the oscillatory component of the resistivity voltage for
T[111]. In this field range, the data are generated by
ellipsoid A (Fig. 2), and consist of the fundamental fre-
quency and its second harmonic. The doubling of the
peaks is due to spin splitting of the Landau levels.
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FIG. 9. 1/H dependence of the amplitude ratios ob-
tained from the data in Fig. 8. The x’s are ratios cal-
culated from Eq. (21) for m,;=0.036m, the “best” mass
obtained from the least-squares fit.

monic became observable. However, since the
cyclotron masses of the ellipsoids are degenerate
for H1l [001], a small misorientation would lead
to four slightly different temperature dependences,
the average value of which would depend on the
temperature interval chosen. Because of this un-
certainty, we are not able to make the comparison
between cross-section and cyclotron mass anisot-
ropies described in the Sec. IV B, For this pur-
pose, it is now clear that a choice other than Hu
{001)-type directions is preferable. Most de-
sirable of course is a measurement for H.L (111)-
type directions, However, interference by other
frequencies as well as harmonics (see Fig. 5)
makes this a difficult matter for this as well as
most other orientations.

Table I also includes ratios of spin splitting to
Landau-level separation m®°g/2m and effective
g values which will now be discussed.

D. Effective g Value

The effective g value is defined in terms of the
energy that spin contributes to the total electronic
energy

€=+ 3Hw,(€)+ 3g(e)8, H (22)

in a magnetic field H. As Fig. 10 shows, 7w (€)
is the energy separation between Landau states n
and # - 1. The former, for example, is split into
spin-down and spin-up states, n+ and n -, re-
spectively, separated in energy by g(€)g,H, where
gle) is the effective g value and B, is the Bohr
magneton. Both the cyclotron frequency w,(€)
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TABLE I. Normalized cyclotron effective masses
m®/m, ratios of spin splitting to Landau-level separa-
tion m®%g/2m, and effective g values for magnetic fields
parallel to [111], [001], and [110] directions. The [111]
values are for ellipsoid A in Fig. 2, and the [110] values
are for ellipsoids C.

Field

direction me/m m<g/2m g
[111] 0.036 £0.002 0.58+0.01 3212
[001] 0.051+0.008 0.58+0.01 23+5
[110] 0.080 +0.014* 0.27+0.01 7+2

2Calculated value [see Eq. (28)].

and the effective g value g(e) will be a function of
€, the energy relative to the band edge, when the
band of interest interacts strongly with other
bands, 1"

For values of 1/H and n for which the right-
hand side of Eq. (22) is equal to the Fermi energy
€p, one can show that

m(ep)gler)

(/H)p - U/H),.
(1/H), = (U/H) gy om ) (23)

where, for example, (1/H),, means the value of
1/H for which the energy of the state n+ is equal to
€r. For sufficiently high magnetic fields, these
differences in 1/H can be directly determined by
the separation in the corresponding peaks of the
Shubnikov-de Haas oscillations. One only needs
to make the correct association of these peaks with
the levels shown in Fig. 10. Here a knowledge of
the phase of the oscillations is helpful. The cosine
function in Eq. (1) can be written

cos(2nF/H)~ ¢) , (24a)
where the frequency is
F=vchS/2me (24b)

and the phase is

gl€)BoH

(n-1)+

(n-1)-

FIG. 10. Splitting of the Landau levels » and n~1
into spin-down (+) and spin-up () states. w,(€) is the
cyclotron frequency, g(e) is the effective g value, and
By is the Bohr magneton.
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G=2mry+ $T+6 . (24c)

When v is assumed to be 3, the term 277y is
omitted from the phase, and the factor (-1)" is
introduced in front of Eq. (2). The phase shift 5,
which is either zero or 7, is determined by the
function cos(mm**rg/2m) in Eq. (2) and thus is in-
fluenced by the size of the g value, From Eq.
(24a), the conditions for extrema in a component

oscillation are
F/H- ¢/21=m, maxima ,

F/H- ¢/21=m+ 3, minima ,

(25)

where m is an integer., Using a plot of integral
multiples of one-half versus the 1/H values of the
extrema, we can decide which values of m lead to
a value of ¢/27 which agrees best with that calcu-
lated from Eq. (24c) for 6=0 or n. This analysis
is described by Figs. 11 and 12 for the fundamental
component (»=1). The solid curve in Fig, 11 is

a datum for H1l [001]. Fourier analysis (Fig. 13)
shows that it consists essentially of the fundamental
frequency and its second harmonic. The positions
of the maxima and minima of the fundamental com-
ponent in the high-field region were obtained from
the extrapolation indicated by the dashed curve.
This extrapolation was made subject to the restric-
tions that (i) the fundamental component have the
same frequency as the low-field data and as given
by the Fourier analysis, and (ii) the intersections
of the dashed curve with the data give the correct
separation between zeros of the second harmonic
component. Figure 12 is a plot of the 1/H posi-

+0.20 T T T T T T T
671026, 90001
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@
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s '@ WHiny - Wy g 55200
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-0.30
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FIG. 11, Normalized oscillatory component of the
resistivity versus 1/H. The solid curve is composed of
the fundamental frequency and its second harmonic. The
doubling of the peaks is due to spin splitting of the Lan-
dau levels. The dashed curve is an extrapolation (see
text) of the fundamental component. The assignment of
peaks in the oscillations to the energy levels shown is
consistent with the result that m®°g/2m >%.
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FIG. 12. Integral multiples of one-half versus the
1/H values of the maxima and minima of the dashed curve
in Fig. 11. Assuming 7 is close to 3, its “free-elec-
tron’”’ value, and labeling the ordinate to obtain an inter-
cept which best agrees with Eq. (24c), 6=m, and ¥
=0,67+0.05.

tions of the maxima and minima of the dashed
curve, Labeling the ordinate to obtain an intercept
which best agrees with Eq. (24c), one obtains
6=mand y=0,67+0.05. A generalized derivation
of y, given by Roth, ® shows a magnetic field de-
pendence which leads to values other than 3. Al-
though our value does differ from 3, there is
neither nonlinearity in Fig. 12, nor differences in
the frequencies obtained from Fourier analyses
over different field ranges to suggest that it is
magnetic field dependent,

For 6=m, cos(mm®g/2m) is negative and m®°g/
2m>0.5. Figure 11 shows an assignment of the
energy levels to the peaks in the solid curve that
is consistent with this result. This assignment is
is not unique but gives the smallest acceptable
value of m*°g/2m. Using Eq. (22) and the peaks
indicated, one obtains

m(ep)g(er)/2m=0.58+0.01 . (26)

A similar analysis performed on the data in Fig.

8 gave the same result within experimental error.
Table I gives the g values that are obtained for
these two orientations from Eq. (26) and the aver-
age values of the corresponding cyclotron masses.
The value g, (€7)=32+2 is to be compared with

the band-edge value of 51 +8 reported by Cuff et al.®
Schilz” has reported g,(€z)=36+2 for p=4 X 10'®
cm™, However, as he points out in a note added

in proof, a different assignment of spin levels to
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FIG. 13. Fourier analysis of the data in Fig. 11 show-
ing that it consists almost completely of the fundamental
frequency at 1.81X10% G and its second harmonic at 3.6
x10° G,

the peaks in the magnetoacoustic oscillations should
have been made. His new assignment agrees with
that presented here. He also used the band-edge
effective mass reported by Cuff et al.® to compute
gu(€z) rather than the mass at the Fermi level.
When both corrections are made, his value agrees
with ours. When similar corrections are made to
his value of g,(e) for p=6 X 10" cm™, the cor-
rected value is smaller, rather than larger, than
the corrected value for p=4 X 10'® cm™, These
corrected results, as well as that presented here,
are then consistent with a smooth increase of g,

to the band-edge value reported by Cuff et al.®

Effective g values for the lead salts have also
been obtained from magnetoemission studies in
p-n junctions by Butler and Calawa,'® and for n-type
PbTe from spin-flip Raman scattering by Patel
and Slusher.? The magnetoemission experiment
measures a g value that is a combination of its
conduction- and valence-band values g° and g*, re-
spectively. Assuming |g%| = |g°], as magnetoab-
sorption studies!* have suggested, Butler and
Calawa!® obtain g =29 for H1l [001] for both bands.
As they expect this to be approximately a band-
edge value, it is reasonable for it to be somewhat
larger than our value given in Table I,

In one of the more direct experiments for ob-
taining g values of free electrons, Patel and
Slusher® found g¢=57+2 and gf=15+1 for the con-
duction band of PbTe. These are also approxi-
mately band-edge values since their material has
electron concentrations between 8 and 10 X 10'¢
cm™®, If we assume |g°| = |g°l, gi=57+2 is within
the uncertainty range quoted by Cuff et al.® for
the band-edge value of g§. However, it is signif-
icantly different from their value for the conduc~
tion-band edge. Table II summarizes these g
values and, in addition, includes our value of g
obtained from data to be described below.

The two-band analysis of PbTe by DW® showed
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that m**g/2m =1 for HIl [111], independent of
carrier concentration, This is a result previously
reported by Cohen for bismuth and of general
validity in a two-band model. Our value of 0. 58
£0. 01 for m{™g, /2m shows that there is a trans-
verse momentum operator P] coupling the valence
band to a second conduction band, This coupling
was neglected when the term 1/m; was dropped
from Eq., (16). (Reference 16 shows that X is
independent of carrier concentration for less re-
strictive approximations.) However, this ap-
proximation was not necessarily unreasonable,
because contributions from other bands often affect
g values to a greater extent than effective masses
(see Ref. 13). DW!? have given an expression for
my°g, /2m in a three-band model, For small €
they obtain

m¥g,/2m=x(€;-€,)/ (€, +€,) , (27)

where €.=€,P2/P{? and €, is the energy gap be-
tween the valence and second conduction bands.
Thus, using 0.58 for m{™g, /2m and 0. 19 eV for
€,, one obtains €,=0.72 eV. Letting €,=A1=1.3
eV, the energy gap between the valence and second
conduction bands calculated by Lin and Kleinman, *?
we find P{?/2m=15.6 eV, This is larger than the
value 8.6 eV obtained for P?/2m from Eq. (19).
Roth?! has shown that g,, the effective g value
for H perpendicular to the major axis of an ellip-
soid of revolution, will differ from the free-elec-
tron value of 2 only if the band in question is
coupled to another band by P, and P,, Thus, a
measurement of g, is a sensitive test for the pres-
ence of both interactions, It is usually difficult
to detect spin splitting in the Shubnikov-de Haas
oscillations corresponding to the largest extremal
orbit because of damping by the correspondingly
large cyclotron mass. However, with the use of
fields up to 150 kG, we believe we have been able

TABLE II. Summary of experimental effective g val-
ues for the valence and conduction bands of PbTe.

Band Authors Carrier & gL £[001]
concentration
(em™%)
Cuff et al. 0 518
Butler and Calawa p-n junction 290
Valence Burke et al. 3x10% 32+2 7:2 235
Schilz 4x10% 36(32)2+2
6x10'8 45(22)*+ 2
Cuff et al. 0 458
Patel and
Conduction Slusher 8—10x101 572 15+1 35°
Butler and
Calawa p-n junction 29°

2Numbers in parenthesis are corrected values (see text).
Y Obtained by assuming g% = 1g°].
¢ Calculated from g, = (g,2cos’0+g,2sin’0)!/2, where ©
is the angle between the magnetic field and a (111)-type
direction.
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to see it. Figure 14 shows data for H Il [110] in
which only two fundamental frequencies should be
present. One corresponds to ellipsoids A and B,
while the other is generated by the largest ex-
tremal orbit of ellipsoids C (see Fig. 2). Figure
15 is the Fourier analysis of this data. Although
the peak at 4,09 X 10° G occurs almost precisely
at a frequency three times that of the fundamental
at 1.4 X 10° G, two reasons for associating it with
the largest extremal orbit of ellipsoids C are

(i) Its amplitude is larger than that of the funda-
mental at 1,4 X 10° G, and (ii) as Fig. 5 shows,
its frequency is the same as the maximum value
obtained at ©=55°, where it is no longer degener-
ate with the third harmonic of the lowest branch.
Perhaps the best evidence for this choice can be
obtained from Fig., 16, which is a plot of integers
versus the 1/H values of the maxima of the high-
frequency component in Fig, 14, According to
Eq. (24c) the intercept at 1/H=0 will depend on
whether this component is a fundamental (»=1) or
a third harmonic (»=3), The value (¢/27),c

=0. 80 is obtained for the parameters »=1, 6=0,
and, as determined above, y=0,67. The intercept,
for the choice of integers shown, is in good agree-
ment with (¢/27),,;, and is unique in the sense that
this agreement is much better than that which can
be obtained for »=3 and/or 6=,

For 6=0, cos(mm{*g, /2m) is positive and
m$°g, /2m < 5. The peak splitting consistent with
this is indicated by the two dashed arrows in Fig,
14. Using Eq. (23), we find

m¥g, /2m=0,27+0.01 . (28)

From either Eqgs. (11) and (12) or (18) and (20) for
the hole concentration of our sample, we find

mS’e = [m2(0)K]V? (29)
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FIG. 14. High-field oscillations for HI[110]. The
peaks indicated by n+ and n— are associated with the spin
splitting g, By H of the Landau levels of the carriers in
ellipsoids Cin Fig. 2. The numbered maxima corre-
spond to the numberead points shown in Fig. 16.
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FIG. 15, Fourier analysis of the data in Fig. 14. We
associate the peak at 4.10 X10° G with the largest ex-
tremal orbit of ellipsoid C in Fig. 2.

Thus, for m,(0)/m=0.022+0.003 (Ref. 3) and X
=13+1, one obtains

me"/m=0,080£0,014 and g,=7+2 . (30)

As discussed above, this deviation of g, from its
free-electron value is evidence that the conduction
and valence bands are coupled by longitudinal as
well as transverse momentum operators, If we
assume |g}|=1g{l, our Fermi-level value for g}
is smaller and therefore consistent with the band-
edge value of g¢ obtained by Patel and Slusher, %

V. SUMMARY AND CONCLUSIONS

We have studied the angular dependence of Shub-
nikov—-de Haas oscillations in a sample of p-type
PbTe having a hole concentration of 3.0 X 108
cm3, For the first time in this material, the
component frequencies were determined by Fourier
analysis. The angular dependence of these fre-
quencies corresponds to a prolate ellipsoidal (111)
surface having an anisotropy K=13. Four (111)
surfaces with this anisotropy generated a volume in
k space which precisely accounts for the number
of holes determined from the high-field Hall coef-
ficient. These results are considerably different
than those obtained by Cuff, Ellett, and Kuglin for
this hole concentration, They reported K ~6, and
were unable to account for all carriers, We be-
lieve their results differ from ours principally be-~
cause of the better resolution that can be obtained
through Fourier analysis and the use of larger
magnetic fields, The presence of higher harmonics,
enhanced by spin splitting of the Landau levels,
together with heavy damping of the frequencies
contributed by the large extremal areas, make
these areas very difficult to determine by conven-
tional analysis. This is especially true at higher
carrier concentrations.
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FIG. 16. Integers versus the 1/H values of the maxi-
ma in Fig. 14. The numbered points correspond to the
numbered maxima in Fig. 14. The slope F of the line
is in good agreement with the peak at 4,10 X103 G in
Fig. 15, (¢/2m) . is obtained by assuming F is a
fundamental frequency.

Since K, measured by Cuff et al. for hole con-
centrations in the low 10'"-cm™ range, was also
approximately 13, one feels that K is probably in-
dependent of hole concentration, at least up to p
=3.0 X 10" cm™, Theoretical work by Lin and
Kleinman and by Mitchell and Wallis shows that
the longitudinal coupling between conduction and
valence bands cannot be neglected as in the DW

model, When this interaction is included in the

ke 5 secular determinant and reasonable approxi-
mations to the resulting dispersion relations are
made, one obtains an expression for an ellipsoid
of revolution in which K is a constant, independent
of carrier concentration,

For H I [111], the ratio of spin splitting to
Landau-level separation m (e z)g(€ z)/2m is 0. 58
+0.01. This deviation from the value 1 for a two-
band model shows that there is a transverse mo-
mentum operator coupling the valence band to a
second conduction band., Using the corresponding
cyclotron effective mass gives g"(e F)= 32+2, In
fields greater than about 70 kG, we believe we have
observed spin splitting in the Shubnikov-de Haas
oscillations corresponding to the largest extremal
orbit on the ellipsoid. From this splitting we ob-
tain g,(€z)="7=2, This deviation of g, from the
free-electron value of 2 is evidence that the valence
band is coupled to the primary conduction band by
longitudinal as well as transverse momentum op-
erators.
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Luminescence and Minority Carrier Recombination in p-Type GaP(Zn,0)
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A detailed study of luminescence and minority carrier recombination in Zn- and O-doped
p-GaP is presented. To interpret the results of photoluminescence measurements, a three-
path model for minority carrier recombination is developed. This model includes recombina-
tion through nearest-neighbor Zn-O complexes, isolated O donors, and an unspecified shunt
path. Included in the model are the effects of thermalization of electrons trapped on Zn-O
centers and the effects of plasma screening by free holes on excitons bound to these centers.
These processes together with nonradiative Auger recombination of excitons and trapped elec-
trons at Zn-O complexes provide the major limitation of the red quantum efficiency in GaP-
(Zn, O). Using an iterative self-consistent fit to the available temperature and Zn-doping de-
pendence of the red luminescence efficiency and time decay, values are obtained for all of the
important capture cross sections, time decay parameters, and Auger recombination coeffi-
cients, as well as the minority carrier lifetime. In addition, the concentrations of the deep
Zn-O and O centers are measured optically. It is concluded that the bulk quantum efficiency
of GaP(Zn,0) can be improved by simultaneously increasing the minority carrier lifetime
and decreasing the free-hole concentration (and consequent Auger processes) by compensation.
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1. INTRODUCTION

Two deep radiative recombination centers are in-
troduced into GaP by the simultaneous presence of
zinc and oxygen impurities. Isolated oxygen is a
deep donor approximately 0.9 eV below the conduc-
tion band. ! Infrared radiative recombination at
oxygen (hv=1, 35 eV) occurs when trapped electrons
recombine either with holes trapped on isolated
zinc acceptors! or with free holes.? The isoelec-
tronic center formed by a zinc acceptor and an oxy-
gen donor on nearest-neighbor sites (Zn-O complex)
also acts as a deep electron trap approximately
0.2-0. 3 eV below the conduction band. *** Red lu-
minescence (hv~1.77 eV) originates from Zn-O
centers in two ways: (i) by pair recombination of
trapped electrons with holes on distant Zn acceptors
and (ii) by recombination of bound excitons. At
room temperature, the red luminescence is essen-
tially excitonic, * whereas the infrared luminescence
is essentially free to bound. 2

In a previous paper® (hereafter referred to as 1),
a general model for the recombination kinetics of
electrons and holes at isoelectronic centers was
developed. This model considered in detail the
three occupation states of the isoelectronic center,
i.e., empty, electron (hole) occupied, and exciton
occupied. It therefore generalized the conventional
two-state Shockley-Read-Hall® (SRH) recombination
model applicable to nonisoelectronic centers. In the
present paper we study minority carrier recombina-
tion in p-type Zn- and O-doped GaP by photolumi-
nescence techniques. A three-path model for the
minority carrier recombination in presented.” This
model includes recombination through the isoelec-
tronic Zn-O complex, the deep O donor, and an un-
specified “shunt path” which accounts for all other
nonradiative centers. The results derived in I are
applied in describing recombination through the
Zn-0 luminescent center. In this treatment we also
consider explicitly how the recombination mecha-
nisms associated with the Zn-O center are modified



